95 research outputs found

    Multipar-T: Multiparty-Transformer for Capturing Contingent Behaviors in Group Conversations

    Full text link
    As we move closer to real-world AI systems, AI agents must be able to deal with multiparty (group) conversations. Recognizing and interpreting multiparty behaviors is challenging, as the system must recognize individual behavioral cues, deal with the complexity of multiple streams of data from multiple people, and recognize the subtle contingent social exchanges that take place amongst group members. To tackle this challenge, we propose the Multiparty-Transformer (Multipar-T), a transformer model for multiparty behavior modeling. The core component of our proposed approach is the Crossperson Attention, which is specifically designed to detect contingent behavior between pairs of people. We verify the effectiveness of Multipar-T on a publicly available video-based group engagement detection benchmark, where it outperforms state-of-the-art approaches in average F-1 scores by 5.2% and individual class F-1 scores by up to 10.0%. Through qualitative analysis, we show that our Crossperson Attention module is able to discover contingent behavior.Comment: 7 pages, 4 figures, IJCA

    Fine-Grained Socioeconomic Prediction from Satellite Images with Distributional Adjustment

    Full text link
    While measuring socioeconomic indicators is critical for local governments to make informed policy decisions, such measurements are often unavailable at fine-grained levels like municipality. This study employs deep learning-based predictions from satellite images to close the gap. We propose a method that assigns a socioeconomic score to each satellite image by capturing the distributional behavior observed in larger areas based on the ground truth. We train an ordinal regression scoring model and adjust the scores to follow the common power law within and across regions. Evaluation based on official statistics in South Korea shows that our method outperforms previous models in predicting population and employment size at both the municipality and grid levels. Our method also demonstrates robust performance in districts with uneven development, suggesting its potential use in developing countries where reliable, fine-grained data is scarce

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore